TITANIUM®

Часть IV

Система ЧПУ на базе архитектуры X86

Оглавление

IV Система ЧПУ на базе архитектуры X86	1
1 Платформа построения устройств ЧПУ «CNC11 TITANIUM»	3
1.1 Общие сведения	3
1.2 Показатели надежности платформы CNC11 TITANIUM®	5
1.3 Особенности построения	5
1.4 Конструктивные характеристики	6
2 Подключение CNC11 TITANIUM® к питающей сети	9
2.1 Подключение ЧПУ	9
2.2 Подключение пульта оператора	9
2.3 Подключение плат входов/выходов	9
З Описание модулей платформы	11
3.1 Модуль вычислителя	11
3.2 Модуль материнской платы ЧПУ	11
3.2.1 Модуль оцифровки датчиков	14
3.2.2 Модуль ЦАП	17
3.2.3 Модуль входов/выходов материнской платы	18
3.2.4 Удаленные модули входов/выходов	22
3.3 Распайка кабеля RS-422	25
3.4 Пульт станочный	27
3.5 Модуль ввода IN32	29
3.6 Модуль вывода OUT24	31
3.7 Модуль ввода/вывода INOUT16/16	34
4 Шаговая версия	36
4.1 Описание работы шаговой версии	36

1

Платформа построения устройств ЧПУ «CNC11 TITANIUM»

1.1 Общие сведения

Платформа построения систем числового программного управления (далее ЧПУ) «CNC11 TITANIUM®» построено на базе X86 совместимой платформы с использованием процессорных модулей Intel. ЧПУ представляет собой компактное моноблочное устройство, объединяющее в своем составе панель оператора и полный набор 8-и канальной системы управления в цифровом варианте и 6-и канального управления в аналоговом варианте. Платы дискретного ввода\вывода подключаются к ЧПУ по высокоскоростному защищенному каналу RS422 протокол NET RTU, EtherCAT, LINK11.

Общий вид ЧПУ показан на рис. 1.1.1.

TITANIUM®

Рис. 1.1.1: Общий вид ЧПУ

1.2 Показатели надежности платформы CNC11 TITANIUM®

Платформа CNC11 TITANIUM® относится к обслуживаемым и восстанавливаемым изделиям.

- Средний срок службы не менее 7 лет.
- Время наработки на отказ 25 000 часов.
- Время непрерывной работы 72 часа.

1.3 Особенности построения

Основной особенностью платформы CNC11 TITANIUM® является использование распределенной архитектуры в построении составных модулей устройства. Выбор этой архитектуры обусловлен ее многолетним использованием основными производителями систем ЧПУ в мире: Siemens (Profibus DP), Fanuc (SSI), Mitsubishi (Sercos), Beckoff (EtherCAT).

Использование архитектуры распределенных устройств (далее РУ) открывает большие возможности по совершенствованию систем управлении в направлении:

- уменьшение габаритов устройства;
- стандартизация используемого оборудования;
- уменьшение потребляемой мощности;
- уменьшение объемов кабельного хозяйства;
- уменьшение срока и квалификации монтажных работ;
- уменьшение стоимости конечного изделия.

Пример соединения CNC11 TITANIUM® в схеме ЧПУ показана на рис. 1.3.1

PDCNC11v0.18.6-2-gb72e5aa 5 000 "HЭT"

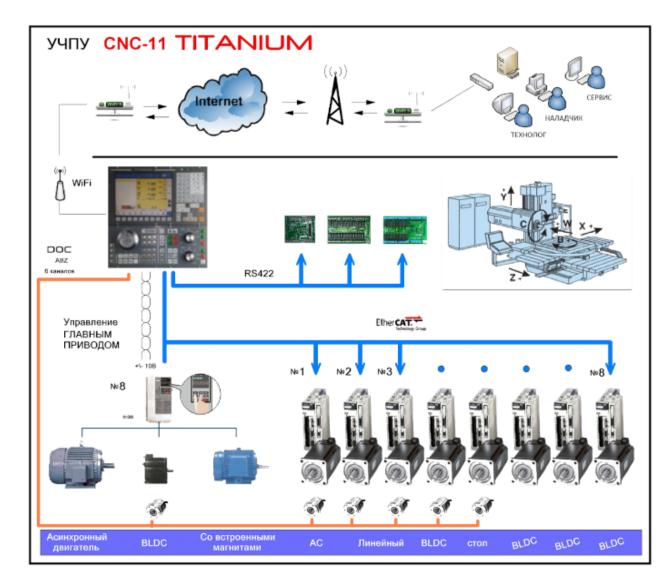


Рис. 1.3.1: Пример соединения CNC11

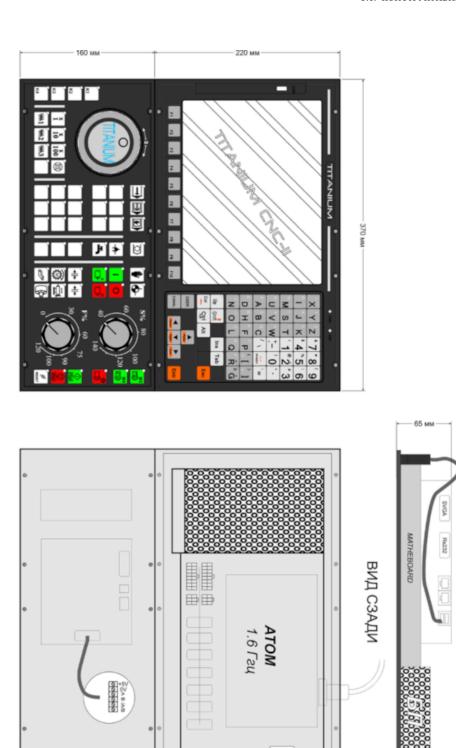
1.4 Конструктивные характеристики

ЧПУ имеет следующие конструктивные характеристики:

- прочная алюминиевая конструкция каркаса;
- степень защиты передней панели управления IP-64;
- кнопочная пленочная клавиатура;
- 10.4-дюймовый цветной монитор ТГТ 800*600;
- сенсорный экран (touchscreen) резистивного типа;
- внутренний источник питания мощностью 60 Вт;
- напряжение питания 24 В;

PDCNC11v0.18.6-2-gb72e5aa 6 000 "HЭT"

• двухэтажная конструкция расположения печатных плат.


Дополнительно к ЧПУ подключается станочный пульт оператора, имеющий свое адресное пространство и не занимающий входа/выхода электроавтоматики.

Габаритные размеры ЧПУ представлены на рис. 1.4.1.

PDCNC11v0.18.6-2-gb72e5aa 7 000 "HЭT"

вид сверху

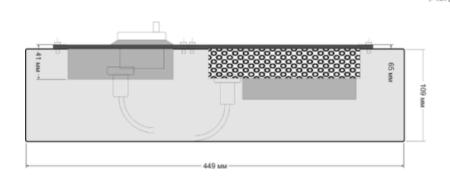


Рис. 1.4.1: Габаритные размеры ЧПУ

Подключение CNC11 TITANIUM® к питающей сети

2.1 Подключение ЧПУ

Питание устройства должно осуществляться от стабилизированного импульсного источника питания +24 В, 60 Вт. Питание ЧПУ и периферии допускается только с гальванической развязкой.

Категорически запрещается:

- использовать для питания устройства фазный и нулевой провода;
- подключать устройство к питающей сети, к которой подключены сварочные аппараты, компрессоры и другое сильноточное оборудование.

Повторное включение устройства должно производиться не ранее чем через 30 секунд после его отключения!

ВНИМАНИЕ!

Общий провод низковольтного питания устройства GND имеет связь с корпусом ЧПУ, это необходимо учитывать при подключении к исполнительным устройствам.

2.2 Подключение пульта оператора

Питание пульта осуществляется от импульсного источника питания постоянного напряжения $24~\mathrm{B}$. Ток потребления пульта — $1~\mathrm{A}$.

2.3 Подключение плат входов/выходов

Для питания плат входов/выходов используется стабилизированный импульсный источник питания напряжением 24B/1A. Ноль 24B необходимо за-

землить. На землю не должно быть подключено других источников питания. Также необходимо установить на выход ИИП однонаправленный защитный стабилитрон 24B.

Подключение к платам выходов INOUT16/16, OUT24 мощной нагрузки напряжением больше 110В и током 1А (золотников, пускателей и т.п.) осуществляется через промежуточное реле.

Для гальванической развязки входов рекомендуется использовать дополнительный источник питания 24B/1A.

PDCNC11v0.18.6-2-gb72e5aa 10 000 "HЭT"

Описание модулей платформы

3.1 Модуль вычислителя

Модуль вычислителя построен с использованием процессорной платы с минимальными характеристиками:

- двухъядерный процессор 1.6 ГГц;
- оперативная память 1Gb;
- накопитель информации 4Gb;
- встроенный контроллеры VGA и HDMI;
- 10/100 Мбит/сек ТХ;
- 1 UDMA\33 IDE;
- 4 USB;

3.2 Модуль материнской платы ЧПУ

Модуль выполнен в виде материнской платы в корпусе.

Внешний вид материнской платы показан на рис. 3.2.1.

Общая схема расположения разъемов и выводов, а также обозначения выводов у разъемов приведены на рис. 3.2.2.

Подключение материнской платы к процессорному модулю показано на рис. 3.2.3 и осуществляется с помощью платы Link11. Порт обмена данных платы Link11 настраивается в параметрах ЧПУ. Также есть возможность подключения одновременно двух материнских плат к одному процессорному модулю.

Возможности модуля материнской платы:

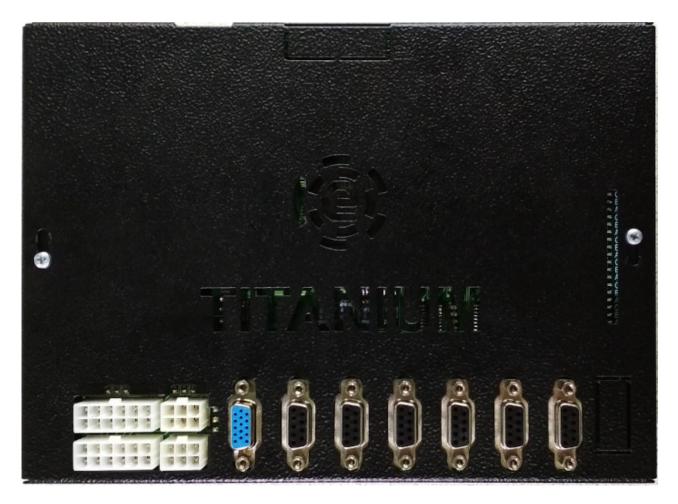


Рис. 3.2.1: Внешний вид материнской платы

- ЦАП 7 каналов, 14 разрядов, -10 В...+10 В;
- 6 каналов энкодеров со схемой питания датчиков от ЧПУ;
- оптоизолированные входа 24 В, 8 шт.;
- оптоизолированные выхода 24 В, 8 шт.;
- выход сторожевого таймера (SPEEPN) в пульте оператора;
- контроллер ввода-вывода NET RTU;
- контроллер клавиатуры.

Для подключения материнской платы к процессорному модулю используется кабель Link11, схема распайки которого изображена на 3.2.4.

Схема платы содержит микросхемы высокой степени интеграции фирм XILINX, PHILIPS, Analog Device. Современные комплектующие, технология сборки и шестислойная печатная плата позволили сделать компактное устройство с малым потреблением мощности. Нулевые точки ЦАПов настраиваются автоматически в процессе отладки системы с точностью до 1 мВ

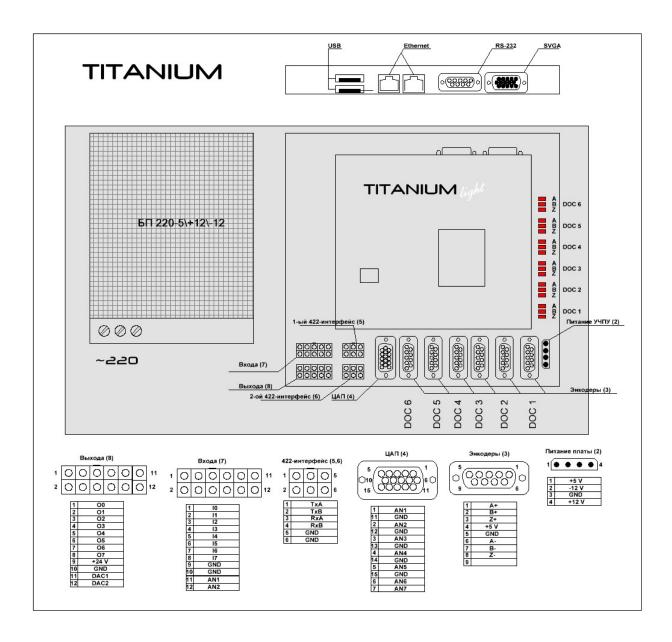


Рис. 3.2.2: Расположение разъемов и выводов на материнской плате

и не требуют регулировки в процессе эксплуатации. Настройка внешних модулей производится параметрами внешних модулей. Загрузка конфигурации платформы (выбор базового ПО, CNC11 TITANIUM®) производится на этапе сборки устройства, сброс или перенастройка конфигурации в процессе эксплуатации возможна сервисной службой, в том числе удаленно через интернет. Для питания устройства используется импульсный источник питания мощностью 50 Вт, он вырабатывает напряжения +12 В, +5 В, -12 В, необходимые для работы устройства. Опорные напряжения цифроаналогового преобразователя формируются внутренними источниками и не зависят от стабильности источника питания. В случае использования встроенного источника для подачи питания на датчики обратной связи его мощность должна составлять не менее 150 Вт.

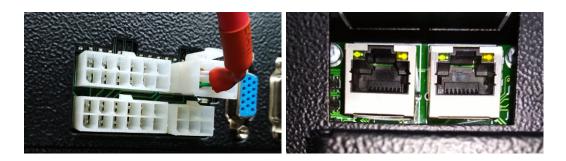


Рис. 3.2.3: Подключение материнской платы

Вороны контактов) (Вид сзади) Торон контактов) (Вид сзади) Коричневый Вело-коричневый Зеленый Оранжевый Экран

Рис. 3.2.4: Схема распайки кабеля Link11

3.2.1 Модуль оцифровки датчиков

Функциональные возможности:

- обработка до 6-ти датчиков инкрементальных перемещений;
- отображение в адресное пространство информации о текущем состоянии и положении каждого канала;
- два режима работы;
- режим без обработки сигнала от ноль-метки (Z);
- режим с обработкой сигнала ноль-метки (запоминание положения в буферных регистрах).

Технические характеристики:

• число одновременно обрабатываемых датчиков — 6;

Адрес	Назначение	Канал
BASE + $0x00h$	Данные (2316)	
BASE + $0x01h$	Данные (15 8)	Канал №1
BASE + 0x02h	Данные (70)	
BASE + $0x03h$	Данные (2316)	
BASE + 0x04h Данные (158)		Канал №2
BASE + 0x05h Данные (70)		
BASE + $0x06h$	Данные (2316)	
BASE + 0x07h Данные (158)		Канал №3
BASE + 0x08h Данные (70)		
BASE + $0x09h$	+ 0x09h Регистр статуса и управления	

Таблица 3.2.1: Регистры устройства

- разрядность каждого счетчика 24 бит¹;
- максимальная входная частота $30 \text{ M}\Gamma\text{ц}^2$;
- уровни входных сигналов ТТЛ.

Регистры устройства описаны в таблице 3.2.1.

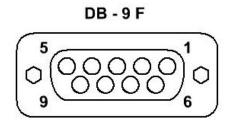
Адресное пространство для каналов 0...2 BASE = 0x0200h, для каналов 3...5 BASE = 0x0210h, для каналов 6...8 BASE = 0x0220h.

Регистры статуса и управления.

Для чтения доступен только регистр статуса, а для записи только регистр управления.

Регистр управления:

- бит 0-1 канал (зарезервировано, записывать по умолчанию 0);
- бит 1-2 канал (зарезервировано, записывать по умолчанию 0);
- бит 2-3 канал (зарезервировано, записывать по умолчанию 0);
- бит 3 канал 1 (0 режим №1; 1 режим №2);
- бит 4 канал 2 (0 режим №1; 1 режим №2);
- бит 5 канал 3 (0 режим №1; 1 режим №2).


Последние два бита сбрасывают триггер захвата данных от сигнала нольметки.

PDCNC11v0.18.6-2-gb72e5aa 15 000 "HЭT"

 $^{^{1}\}Pi$ о желанию заказчика может быть увеличено.

²По желанию заказчика может быть увеличено.

1	A+	
2	B+	
3	Z+	
4	+5 V	
5	GND	
6	A-	
7	B-	
8	Z-	
9		

Рис. 3.2.5: Разъем подключения датчиков

• бит 6 и 7: 11 — сбрасывается триггер 1 канала; 10 — сбрасывается триггер 2 канала; 0 — сбрасывается триггер 3 канала; 00 — сброса триггеров не происходит.

Регистр состояния:

- бит 0 произошло запоминание положения контролируемого объекта в момент прихода сигнала ноль-метки 1 канала;
- бит 1 был зафиксирован сигнал ошибки преобразователя 1 канала;
- бит 2 произошло запоминание положения контролируемого объекта в момент прихода сигнала ноль-метки 2 канала;
- бит 3 был зафиксирован сигнал ошибки преобразователя 2 канала;
- бит 4 произошло запоминание положения контролируемого объекта в момент прихода сигнала ноль-метки 3 канала;
- бит 5 был зафиксирован сигнал ошибки преобразователя 3 канала;
- бит 6 и 7 не используются.

Разъем подключения датчиков инкрементальных перемещений показан на рис. 3.2.5.

- CN2 Канал 1
- CN3 Канал 2
- CN4 Канал 3
- CN5 Канал 4
- CN6 Канал 5

PDCNC11v0.18.6-2-gb72e5aa 16 000 "HЭT"

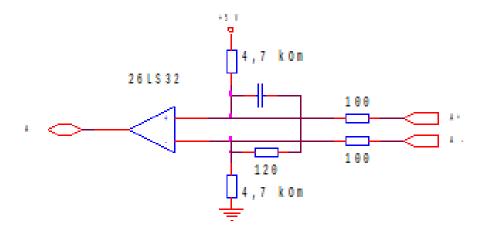


Рис. 3.2.6: Входная цепь канала датчика

• CN7 — Канал 6

Входная цепь канала датчика изображена на рисунке 3.2.6.

3.2.2 Модуль ЦАП

Технические характеристики:

- разрядность 14 бит;
- количество каналов 7 шт;
- тип D/A сегментированный с двойной буферизацией;
- выходное напряжение +10 В...- 10 В;
- выходной ток 5 мА;
- интегральная линейность 0,008% FSR;
- дифференциальная линейность 0,008% FSR;
- температурный коэффициент 20 ppm FSR на градус Цельсия.

Распределение портов ЦАП приведено в таблице 3.2.2.

Адресное пространство для первого модуля BASE = 0x0230h, для второго модуля BASE=0x2C0h.

PDCNC11v0.18.6-2-gb72e5aa 17 000 "HЭT"

Адрес Назначение		Доступ
BASE + 0x00h	Данные канала 0 (158)	
BASE + 0x01h	Данные канала 0 (70)	
BASE + 0x02h	Данные канала 1 (158)	
BASE + $0x03h$	Данные канала 1 (70)	
BASE + 0x04h	Данные канала 2 (158)	
BASE + $0x05h$	Данные канала 2 (70)	
BASE + 0x06h	Данные канала 3 (158)	
BASE + 0x07h	Данные канала 3 (70)	Запись
BASE + 0x08h	Данные канала 4 (158)	Эшись
BASE + 0x09h Данные канала 4 (70)		
BASE + 0x0Ah	SASE + 0x0Ah Данные канала 5 (158)	
BASE + 0x0Bh Данные канала 5 (70)		
BASE + 0x0Ch	Данные канала 6 (70)	
BASE + 0x0Dh	Данные канала 6 (70)	
BASE + 0x0Eh	Данные канала 7 (70)	
BASE + 0x0Fh	Данные канала 7 (70)	

Таблица 3.2.2: Распределение портов ЦАП

3.2.3 Модуль входов/выходов материнской платы

В данной версии на системной плате расположено 8 входов и 8 выходов. Все они гальванически развязаны от входных цепей.

Входа:

- количество 8 шт;
- номинальное входное напряжение 24 В;
- логический «0» < 9 В;
- логическая «1» > 12 В;
- максимальное входное напряжение 32 В;
- номинальный входной ток 10 мА;
- напряжение изоляции 1500 В.

Выходы:

количество — 8 шт;

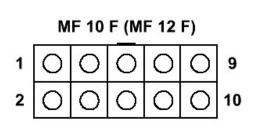
PDCNC11v0.18.6-2-gb72e5aa 18 000 "HЭT"

Таблица 3.2.3: Распределение адресов входов/выходов

Адрес	Назначение
0x300 + 0x00h	Входы (70)
BASE + 0x01h	Зарезервировано
BASE + $0x02h$	Зарезервировано
BASE + $0x03h$	Зарезервировано
BASE + 0x04h	Зарезервировано
BASE + $0x05h$	Зарезервировано
BASE + 0x06h	Зарезервировано
BASE + $0x07h$	Зарезервировано
0x308 + 0x00h	Выходы (70)
BASE + $0x01h$	Зарезервировано
BASE + $0x02h$	Зарезервировано
BASE + $0x03h$	Зарезервировано
BASE + $0x04h$	Зарезервировано
BASE + $0x05h$	Зарезервировано
BASE + 0x06h	Зарезервировано
BASE + $0x07h$	Зарезервировано

- максимальное выходное напряжение 40 В;
- максимальный выходной ток 80 мА;
- напряжение изоляции 1500В.

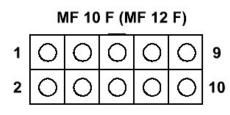
Распределение адресов входов/выходов приведено в таблице 3.2.3.


Разъем CN10 для подключения входов представлен на рисунке 3.2.7. Соответствие битов входам указано в таблице 3.2.4.

Разъем CN11 для подключения выходов показан на рисунке 3.2.8.

Соответствие битов выходам указано в таблице 3.2.5.

PDCNC11v0.18.6-2-gb72e5aa 19 000 "HЭT"



1	10
2	I1
2 3 4	12
4	13
5	14
6	15
7	16
8	17
9	GND
10	GND

Рис. 3.2.7: Разъем CN10 для подключения входов

Таблица 3.2.4: Соответствие битов входам

№ бита	№ входа
7	I7
6	I3
5	I5
4	I4
3	I3
2	I2
1	I1
0	10

1	O0
2	01
3	O2
4	O3
5	04
6	O5
7	O6
8	07
9	+24 V
10	GND

Рис. 3.2.8: Разъем CN11 для подключения выходов

PDCNC11v0.18.6-2-gb72e5aa 20 000 "HЭT"

Таблица 3.2.5: <u>Соответствие битов выходам CNC11</u>

№ бита	№ выхода
7	O7
6	O6
5	O5
4	O4
3	О3
2	O2
1	O1
0	О0

3.2.4 Удаленные модули входов/выходов

Дополнительно подключаемые платы ввода-вывода отображаются в отдельном диапазоне адресов. В стандартной комплектации выделено 16 байт входов (128 точек входа) и 16 байт выходов (128 точек вывода).

Распределение входов представлено в таблице 3.2.6. Базовый адрес входов BASE=0x0310h.

Распределение выходов представлено в таблице 3.2.7. Базовый адрес BASE = 0x0320h.

Каждая плата имеет свой диапазон адресов. Например, для платы IN32 — 4 байта входов; плата INOUT16/16 — 2 байта входов и 2 байта выходов. Перемычки на платах задают смещение относительно базового адреса (для входов — 0х0310h, а для выходов — 0х0320h). Следует обратить внимание на то, что различных типы плат имеют разную величину смещения. Эти величины приведены в таблице 3.2.8. Состояние перемычек: 0 — разомкнута, 1 — замкнута.

Рассмотрим подключение базового комплекта плат в систему CNC11 (2 платы INOUT16/16). Каждая из плат имеет 2 байта входов и 2 байта выходов. Также следует учесть, что на самой материнской плате есть по одному байту входа и выхода. Таким образом, для настройки данной комплектации используется следующая конфигурация:

- входа I1.1...I1.8 входа на материнской плате;
- входа I2.1...I3.8 входа первой удаленной платы;
- входа I4.1...5.8 входа второй удаленной платы;
- выхода U1.1...U1.8 выхода на материнской плате;
- входа U2.1...U3.8 выхода первой удаленной платы;
- входа U4.1...U5.8 выхода второй удаленной платы.

Для этого вводим следующие параметры для протокола NET RTU:

```
N200 = 1; // нумерация с I1;
```

N201 = 1; // один байт входов;

N202 = 0x300; // адрес для чтения 0x300h;

N203 = 0; // идентификатор драйвера sys;

N204 = 0; // прямая логика;

PDCNC11v0.18.6-2-gb72e5aa 22 000 "HЭТ"

Таблица 3.2.6: Распределение портов входов

Адрес	Назначение
BASE + 0x00h	Данные I0 (7 0)
BASE + 0x01h	Данные I1 (7 0)
BASE + $0x02h$	Данные I2 (7 0)
BASE + $0x03h$	Данные I3 (7 0)
BASE + $0x04h$	Данные I4 (7 0)
BASE + $0x05h$	Данные I5 (7 0)
BASE + $0x06h$	Данные I6 (7 0)
BASE + $0x07h$	Данные I7 (7 0)
BASE + 0x08h	Данные I8 (7 0)
BASE + $0x09h$	Данные I9 (7 0)
BASE + 0x0Ah	Данные I10 (7 0)
BASE + 0x0Bh	Данные I11 (7 0)
BASE + 0x0Ch	Данные I12 (7 0)
BASE + 0x0Dh	Данные I13 (7 0)
BASE + 0x0Eh	Данные I14 (7 0)
BASE + 0x0Fh	Данные I15 (7 0)

- N205 = 2; // начало нумерации для удаленных входов (I2 ...);
- N206 = 4; // 4 байта входов (по 2 на каждую плату);
- N207 = 0x310; // адрес для чтения удаленных входов 0x310h;
- N208 = 0; // идентификатор драйвера sys;
- N209 = 0; // прямая логика;
- N300 = 1; // нумерация с U1;
- N301 = 1; // один байт выходов;
- N302 = 0x308; // адрес для записи 0x308h;
- N303 = 0; // идентификатор драйвера sys;
- N304 = 0; // прямая логика;
- N305 = 2; // начало нумерации для удаленных выходов (U2 ...);
- N306 = 4; // 4 байта выходов (по 2 на каждую плату);

Таблица 3.2.7: Распределение портов выходов

Адрес	Назначение		
BASE + 0x00h	Данные О0 (70)		
BASE + $0x01h$	Данные О1 (70)		
BASE + $0x02h$	Данные О2 (70)		
BASE + $0x03h$	Данные ОЗ (70)		
BASE + $0x04h$	Данные О4 (70)		
BASE + $0x05h$	Данные О5 (70)		
BASE + 0x06h	Данные Об (70)		
BASE + $0x07h$	Данные О7 (70)		
BASE + $0x08h$	Данные О8 (70)		
BASE + $0x09h$	Данные О9 (70)		
BASE + 0x0Ah	Данные О10 (70)		
BASE + 0x0Bh	Данные О11 (70)		
BASE + 0x0Ch	Данные О12 (70)		
BASE + 0x0Dh	Данные О13 (70)		
BASE + 0x0Eh	Данные О14 (70)		
BASE + 0x0Fh	Данные О15 (70)		

N307 = 0x320; // адрес для записи удаленных выходов 0x320h;

N308 = 0; // идентификатор драйвера sys;

N309 = 0; // прямая логика.

Для этого вводим следующие параметры для протокола LINK11:

N200 = 1; // нумерация с I1;

N201 = 5; // количество байт входов;

N202 = 0; //сквозное смещение в байтах относительно первой подключенной платы (материнской платы);

N203 = 0; // идентификатор драйвера titan;

N204 = 0; // прямая логика;

N300 = 1; // нумерация с U1;

N301 = 5; // один байт выходов;

PDCNC11v0.18.6-2-gb72e5aa 24 000 "HЭТ"

	Типы плат					
Перемычки	IN32		OUT24		INOUT16/16	
	Сме	ещение	Смещение		Смещение	
	B	ходов	Выходов		Входов	Выходов
0001	00h	I1-I4	00h	01-03	I1-2	01-02
0010	02h	I3-I6	01h	O2-O4	I3-I4	O3-O4
0011	04h	I5-I8	02h	O3-O5	I5-I6	O5-O6
0100	06h	I7-I10	03h	04-06	I7-I8	07-08
0101	08h	I9-I12	04h	O5-O7	I9-I10	O9-O10
0110	0Ah	I11-I14	05h	O6-O8	I11-I12	O11-O12
0111	0Ch	I13-I16	06h	07-09	I13-I14	013-014
1000	-	-	07h	O8-O10	-	-
1001	-	-	08h	O9-O11	-	-
1010	-	-	09h	O10-O12	-	-
1011	-	-	0Ah	O11-O13	-	-
1100	-	-	0Bh	012-014	-	-
1101	-	-	0Ch	O13-O15	-	-

Таблица 3.2.8: Адресация плат входов-выходов

N302 = 0; // сквозное смещение в байтах относительно первой подключенной платы (материнской платы);

N303 = 0; // идентификатор драйвера titan;

N304 = 0; // прямая логика.

На самих платах ввода/вывода необходимо расставить перемычки таким образом — 001 и 010. Тогда у платы с перемычками 001 первый вход будет соответствовать I2.1, второй — I2.2, девятый — I3.1, шестнадцатый — I3.8; первый выход на плате будет соответствовать U2.1, второй — U2.2, шестнадцатый U3.8. Для второй платы с перемычкой 010 первый вход на плате соответствует I4.1, второй I4.2, шестнадцатый — I5.8; первый выход соответствует U4.1, второй — U4.2 и т.д.

3.3 Распайка кабеля RS-422

Важно: кабель не должен иметь видимых повреждений, оголенных участков проводников, сильных перегибов. Допускается использование только

PDCNC11v0.18.6-2-gb72e5aa 25 000 "HЭТ"

Рис. 3.3.1: Вид со стороны ЧПУ

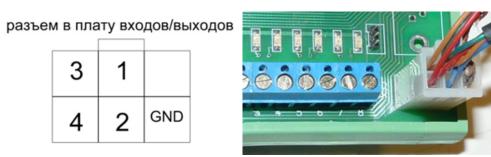


Рис. 3.3.2: Вид со стороны проводников

экранированного кабеля.

- 1. Распайку участка кабеля со стороны стойки CNC необходимо произвести согласно рисунку 3.3.1.
- 2. Распайку участка кабеля со стороны удаленных плат входов/выходов необходимо произвести согласно рисунку 3.3.2.
- 3. Распайку кабеля для последовательного подключения удаленных плат входов/выходов необходимо произвести согласно рисунку 3.3.3.

PDCNC11v0.18.6-2-gb72e5aa 26 000 "HЭT"

Интерфейс RS-422

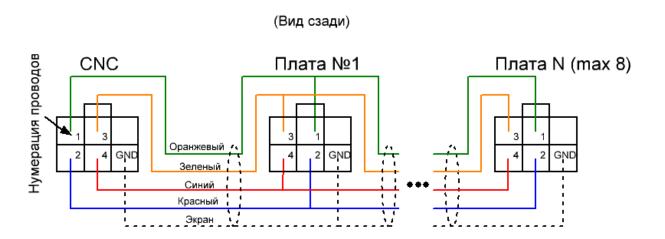


Рис. 3.3.3: Последовательное подключение плат входов/выходов

3.4 Пульт станочный

Станочный пульт оператора (СПО-24-1) представлен на рисунке 3.4.1. Подключение к платформе CNC11 TITANIUM[®] осуществляется через интерфейс RS-232. Пульт не занимает адресное пространство на платах ввода/вывода.

Пульт имеет пленочную клавиатуру с ярко выраженным тактильным эффектом. Каждая кнопка имеет подсветку для индикации нажатия и текущего состояния. Все кнопки свободно программируемые. Пульт имеет два плавных регулятора, обрабатываемых как корректор подач и корректор оборотов шпинделя соответственно. На пульте смонтирован ручной генератор импульсов, обслуживаемый программным обеспечением CNC11 TITANIUM[®].

Кнопки и индикаторы пульта оператора имеют адреса, указанные на рисунке 3.4.2³. Подключение пульта интерфейсом RS-232 предполагает его свободное размещение на станке с удалением от модуля ЧПУ до 10 метров при условии прокладки кабеля отдельно от силовых линий. Питание пульта осуществляется от импульсного источника питания постоянного напряжения 9-30 Вольт. Ток потребления пульта — 1 А.

PDCNC11v0.18.6-2-gb72e5aa 27 000 "HЭТ"

³Могут быть смещены параметрами.

Рис. 3.4.1: Станочный пульт оператора

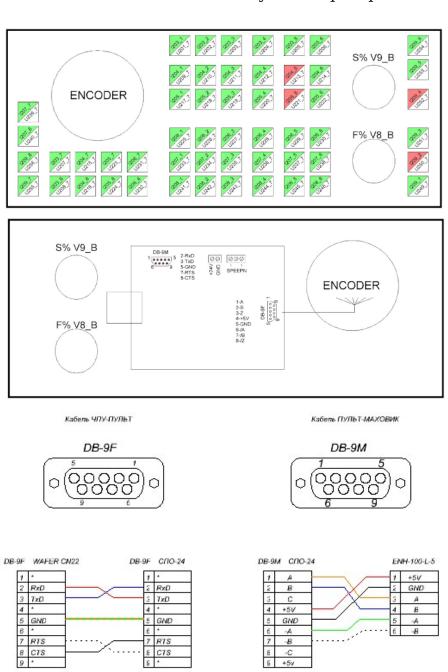


Рис. 3.4.2: СПО-24-1, адресное пространство и разъемы

3.5 Модуль ввода IN32

Модуль ввода предназначен для организации ввода дискретных данных в систему ЧПУ по протоколу NET RTU, представлен на рисунке 3.5.1.

Характеристики IN32:

- 32 оптоизолированных дискретных линии;
- задающие цепи 10 мА;
- индикация состояния входных сигналов;
- дублирующий разъем для ввода или вывода входных линий;
- интерфейс RS-422;
- номинальное напряжение питания +24В;
- индикация состояния интерфейса RS-422;
- установка адресного пространства с помощью перемычек.

Допускается ремонт входных цепей платы входов монтажными и пусконаладочными организациями. Смещение платы в общем адресном пространстве указано ниже в таблице 3.5.1.

Счет перемычек следующий: 4-2-1 — обозначения перемычек, а 001 — соответствие замкнутых и разомкнутых перемычек: 0 соответствует разомкнутой перемычке, а 1 — замкнутой.

Общая схема подключения платы IN32 к ЧПУ и электроавтоматики станка приведена на рисунке 3.5.2.

Таблица 3.5.1: Смещение платы IN32 в общем адресном пространстве

Перемычки 4-2-1	Смещение входов		
001	00h	I1-I4	
010	02h	I3-I6	
011	04h	I5-I8	
100	06h	I7-I10	
101	08h	I9-I12	
110	0Ah	I11-I14	
111	0Ch	I13-I16	

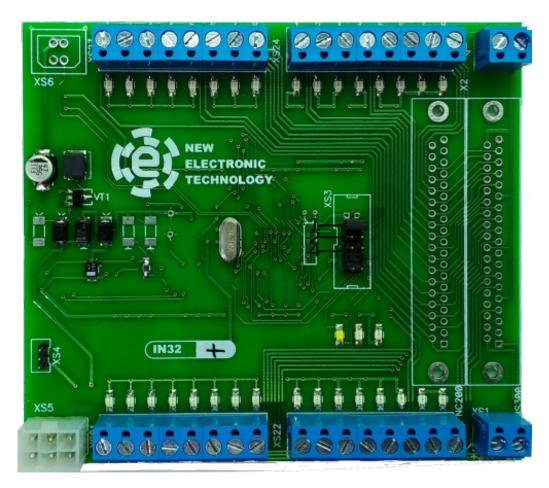


Рис. 3.5.1: Модуль ввода IN32

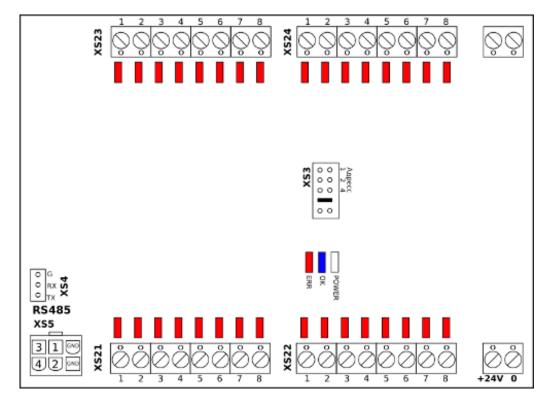


Рис. 3.5.2: Схема подключения платы IN32

3.6 Модуль вывода OUT24

Модуль вывода OUT24 снят с производства. Описание в данной документации приведено, для пользователей уже имеющих данный модуль.

Модуль вывода предназначен для организации дискретного вывода данных из системы ЧПУ по протоколу NET RTU и представлен на рисунке 3.6.1.

Характеристики OUT24:

- 24 реле с нагрузочной способностью ~110В 1А;
- 4 шт. NO+NC;
- 20 шт. NO;
- индикация состояния выходных сигналов;
- интерфейс RS-485 по протоколу NET RTU;
- номинальное напряжение питания +24В;
- индикация состояния интерфейса RS-485;
- перемычки для установки адресного пространства.

Схема расположения перемычек адресного пространства показана на рисунке 3.6.2, а соответствующие смещения адресов указаны в таблице 3.6.1.

PDCNC11v0.18.6-2-gb72e5aa 31 000 "HЭT"

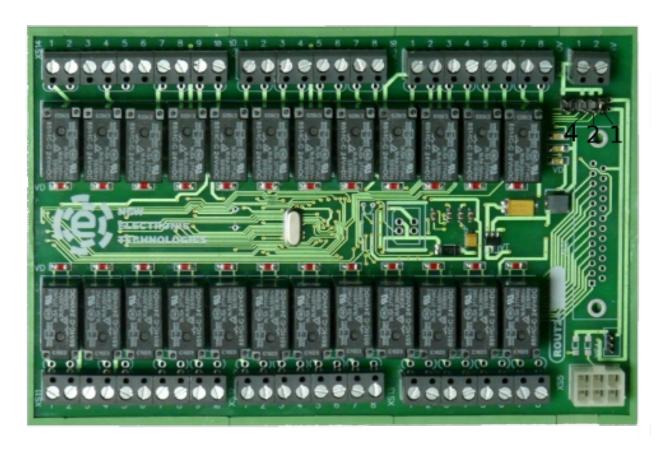


Рис. 3.6.1: Модуль вывода OUT24

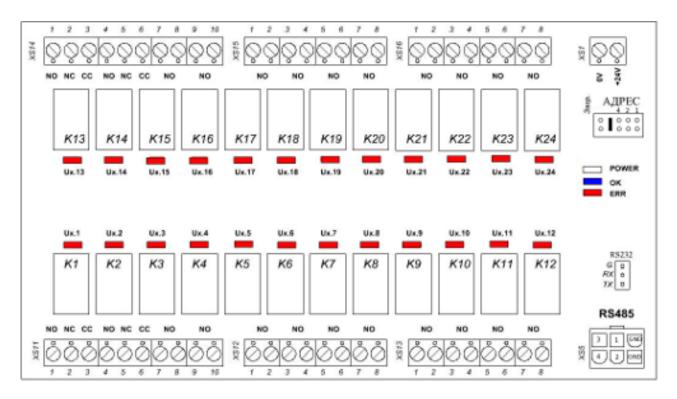


Рис. 3.6.2: Схема подключения OUT24

Таблица 3.6.1: Смещение выходов платы OUT24

Перемычки 4-2-1	Смещение выходов		
0001	00h	O1-O3	
0010	01h	O2-O4	
0011	02h	O3-O5	
0100	03h	O4-O6	
0101	04h	O5-O7	
0110	05h	O6-O8	
0111	06h	O7-O9	
1000	07h	O8-O10	
1001	08h	O9-O11	
1010	09h	O10-O12	
1011	0Ah	O11-O13	
1100	0Bh	O12-O14	
1101	0Ch	O13-O15	

3.7 Модуль ввода/вывода INOUT16/16

Модуль ввода/вывода INOUT16/16 представлен на рисунке 3.7.1. Характеристики INOUT 16/16:

- 16 реле с нагрузочной способностью ~110В 1 А;
- 4 шт NO+NC;
- 12 шт. NO;
- индикация состояния выходных сигналов;
- индикация состояний входных сигналов;
- 16 оптоизолированных дискретных линии;
- задающие цепи 10мА;
- интерфейс RS-485 по протоколу NET RTU;
- номинальное напряжение питания +24В;
- индикация состояния интерфейса RS-485;
- перемычки для установки адресного пространства.

Смещения перемычек указаны в таблице 3.7.1.

Схема расположения представлена на рисунке 3.7.2.

Таблица 3.7.1: Смещение перемычек

Перемычки 4-2-1	Смещение входов		Смещение выходов	
001	00h	I0 — I1	00h	O0-O2
010	02h	I2 — I1	02h	O2-O4
011	04h	I4 — I1	04h	O4-O6
100	06h	I6 — I1	06h	O6-O8
101	08h	I8 — I1	08h	O8-O10
110	0Ah	I10 — I1	0Ah	O10-O12
111	0Ch	I12 — I1	0Ch	O12-O14

PDCNC11v0.18.6-2-gb72e5aa 34 000 "HЭT"

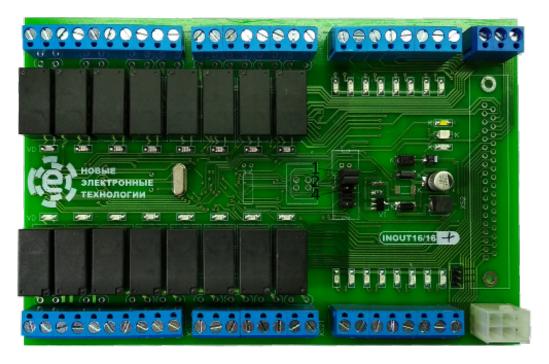


Рис. 3.7.1: Модуль ввода/вывода INOUT16/16

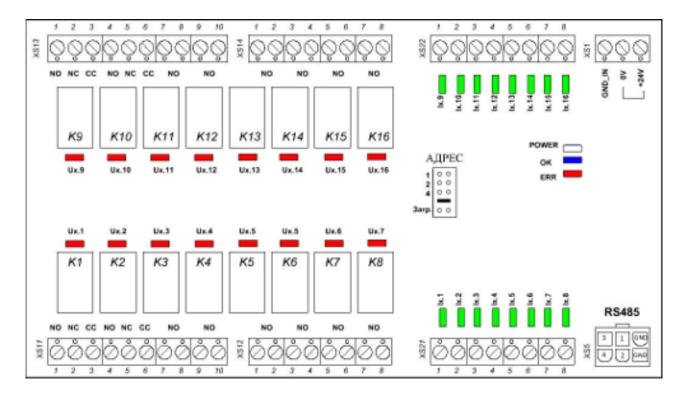


Рис. 3.7.2: Схема расположения

4

Шаговая версия

4.1 Описание работы шаговой версии

Характеристики:

- диапазон выходной частоты 0...50 кГц;
- тип управления двухпроводное Step+/Step- или Step/Dir;
- уровни управляющих сигналов 5B TTL;
- количество управляемых осей 4.

На рисунке 4.1.1 показано шаговое управление Step+/Step-.

На рисунке 4.1.2 показано шаговое управление Step/Dir.

Назначение выводов в шаговой версии CNC11 TITANIUM® (для версии до 4-х управляемых осей, для систем ЧПУ выпуска после 2014 года) указано в таблице 4.1.1, а расположение выводов — на рисунке 4.1.3.

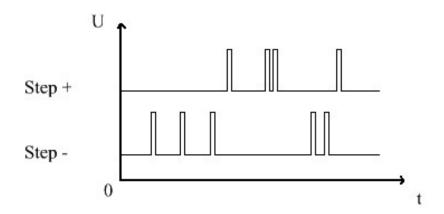


Рис. 4.1.1: Шаговое управление Step+/Step-

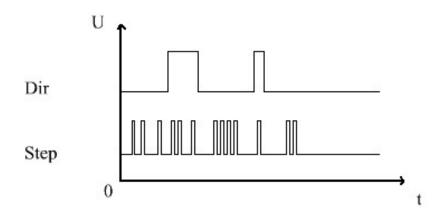


Рис. 4.1.2: Шаговое управление Step/Dir

ВЫХОДА CN12 19 000000000 1 20 00000000 2

Рис. 4.1.3: Выхода разъема CN12

PDCNC11v0.18.6-2-gb72e5aa 37 000 "HЭT"

Таблица 4.1.1: Назначение выводов шагового управления

Версия STEP-STEP		Версия STEP-DIR		
Вывод	Назначение	Вывод	Назначение	
1	STEP1+	1	DIR1	
2	STEP1-	2	STEP1	
3	STEP2+	3	DIR2	
4	STEP2-	4	STEP2	
9	STEP3+	9	DIR3	
10	STEP3-	10	STEP3	
11	STEP4+	11	DIR4	
12	STEP4-	12	STEP4	
19	GND	19	GND	
20	GND	20	GND	

Приложение А. Схема шлейфов используемых в ЧПУ

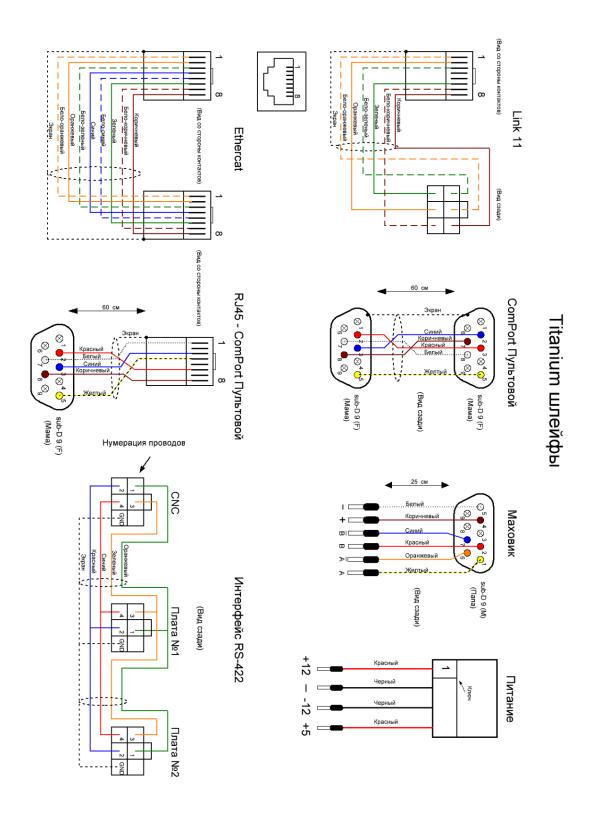


Рис. 5.1.1: Шлейфы ЧПУ

PDCNC11v0.18.6-2-gb72e5aa 39 000 "HЭT"